GERMAN AVIATION BENCHMARKING

Benchmarking Coastal Airports with Regard to Seasonality

Revised Version: 25.11.2010

Vedad Avdagic <u>vedadavd 1@hotmail.com</u> Branko Bubalo <u>branko.bubalo@googlemail.com</u> Tolga Ülkü <u>tolgaul@yahoo.com</u>

GARS Workshop "Benchmarking of Airports" 25-26 November, Berlin, Germany

Acknowledgments:

- The Paper is part of the GAP (German Airport Performance) Research Project at the Berlin School of Economics and Law (HWR) that is supported by the Federal Ministry of Research and Technology,
- See <u>www.gap-projekt.de</u> for further details.

Outline:

- Background and Research Motivation
- Data and Characteristics of Sample Airports
- Indicators of Inequality and Variation
- Financial Situation of Sample Airports
- Efficiency Measures
- Special Issues
- Summary and Outlook

PERFORMANCE					BENCHMARKING				
		IATA				IATA			
Rank	Airport	Code	Result	Rank	Airport	Code	Result		
	Dusseldort	DUS	99.49%	33	Oslo	OSL	45.09%		
2	Zurich	ZRH	91.69%	34	MoscomD	DME	44.47%		
3<	Paris CDG 🗲	CDG	91.60%	35	London City	LCY	42.67%		
4	Frankfurt/Man	FRA	89.07%	36	Valencia	VLC	41.01%	-	
5	Maunu	MAD	87.94%	37	Toulouse	ILS	40.22%		
0	London H	LUD	84.07%	38	Rhodes	RHO	40.08%		
7	Nice	NCE	82.12%	39	Mahon	MAH	39.92%		
8	Istanbul	IST	79.00%	40	Budapest	BUD	39.71%		
9	Brussels	BRU	78.92%	41	Malaga	AGP	39.44%		
10	Munich	MUC	74.55%	42	Gothenburg	GOT	38.78%		
11	Stuttgart	STR	74.49%	43	Jersey	JER	38.74%		
12	Amsterdam	AMS	72.05%	44	Lamaca	LCA	38.57%		
13	London G	LGW	69.17%	45	Venice	VCE	37.16%		
14	Lisbon	LIS	67.04%	46	Chania	CHQ	37.12%		
15	Hamburg	HAM	66.84%	47	Heraklion	HIER	34.95%		
16	Marseille	MRS	63.44%	48	Faro	FAO	34.06%		
17	Warsaw	WAW	62.22%	49	Clemont F	CFE	31.78%		
18	Geneva	GVA	61.62%	50	Bremen	BRE	31.58%		
19	Copenhagen	CPH	61.50%	51	Almeria	LEI	29.56%		
20	Manchester	MAN	59.31%	52	Tenenfe	TFS	29.17%		
21	Vienna/S	VIE	56.62%	53	Sevilla	SVQ	28.38%		
22	Nuremberg	NUE	56.00%	54	St.Petersburg	LED	27.62%		
23	MoscowV	VKO	55.97%	55	Ljubljana	LJU	25.76%		
24	Rome Fiumicino	FCO	55.73%	56	Strachourg	SXB	24.52%		
25	Athens	ATH	54.21%	5	Kerkyra (Cortu)	CFU	24.30%		
26	Paris ORY	ORY	53.34%	58	Genoa	GOA	23.65%		
27	Lyon	LYS	53.08%	59	Sofia	SOF	22.18%		
28	Arrecife	ACE	51.77%	60	Dresden	DRS	20.43%		
29	Stockholm	ARN	51.55%	61	Santiage del Monte	OVD	18.30%		
30	Cologne/Bonn	CGN	51.05%	62	Billung	BLL	18.24%		
31	Gran Canaria	LPA	48.50%	63	Riga	RIX	16.71%		
32	Bologna	BLQ	45.51%	64	Vilnius	VNO	4.66%	- 1	

AAN AIDDOD

CEDMAN AVIATION

Large airports with capacity bottlenecks are at the top of the table

> Airports with high seasonality are in the bottom of the table

1-RUNWAY UTILIZATION GIVEN BY YEARLY ACTUAL CAPACITY / AVAILABLE CAPACITY, 2002

Measurement & Efficiency Benchmarking:

Motivation for Study and Effects of Seasonality

 Tendency to evaluate Airports with Seasonal Air Traffic as underutilized

• But

- Tourism creates positive externalities, that justifies investment in such airports
- The seasonal nature of the airport must be considered and measured to make more meaningful comparisons
- Here a first attempt, thanks to good data!

Outline:

- Background and Research Motivation
- Data and Characteristics of Sample Airports
- Indicators of Inequality and Variation
- Financial Situation of Sample Airports
- Efficiency Measures
- Special Issues
- Summary and Outlook

GERMAN AVIATION BENCHMARKING

The Situation: Seasonality in Europe*

Source: Eurocontrol

* Includes over flights

GERMAN AVIATION BENCHMARKING

Airport Sample

→ Dubrovnik (DBV)
→ Ljubljana (LJU)
→ Podgorica (TGD)
→ Pula (PUY)
→ Split (SPU)
→ Tivat (TIV)
→ Zadar (ZAD)
→ Zagreb (ZAG)

Osijek and Rijeka have been excluded, as they are too small.

Data Sources:

First Hand:

Monthly Data from Participating Airports

Secondary Sources:

- Flight Schedule Data from Flightstats.com and Official Airline Guide (OAG)
- Eurostat Statistical Database and Eurocontrol "Performance Review Report"

GERMAN AVIATION BENCHMARKING

Airline Profiles at the different airports:

Data extracted from September 2010;

Airline Name	Airline	ZAG	SPU	DBV	TGD	TIV	ZAD	PUY	Total
CROATIA AIRLINES	OU	64%	41%	<mark>29%</mark>	2%	0%	<mark>43%</mark>	40%	38%
MONTENEGRO AIRLINES	YM	0%	0%	0%	65%	38%	0%	0%	13%
GERMANWINGS	4U	5%	13%	3%	0%	0%	6%	5%	5%
JAT AIRWAYS	JU	0%	0%	0%	16%	16%	0%	0%	4%
EASYJET	U2	0%	8%	9%	0%	0%	0%	0%	3%
TYROLEAN AIRWAYS	VO	4%	0%	0%	5%	0%	0%	3%	2%
MALEV HUNGARIAN AIRLINES	MA	4%	3%	0%	4%	0%	0%	0%	2%
NORWEGIAN AIR SHUTTLE	DY	0%	6%	6%	0%	0%	0%	0%	2%
RYANAIR	FR	0%	0%	0%	0%	0%	41%	10%	2%
AUSTRIAN AIRLINES AG	OS	1%	3%	4%	0%	0%	0%	0%	2%
AIR FRANCE	AF	4%	0%	0%	0%	0%	0%	0%	1%
LUFTHANSA CITYLINE	CL	2%	3%	1%	0%	0%	0%	0%	1%
CZECH AIRLINES	OK	2%	1%	1%	2%	0%	0%	0%	1%
AEROFLOT RUSSIAN AIRLINES	SU	2%	3%	0%	0%	0%	0%	0%	1%
SAS SCANDINAVIAN AIRLINES	SK	1%	3%	0%	0%	1%	0%	3%	1%
TURKISH AIRLINES	ТК	2%	0%	0%	2%	0%	0%	0%	1%
AUGSBURG AIRWAYS	IQ	2%	0%	1%	0%	0%	0%	0%	1%
JET2.COM	LS	0%	1%	4%	0%	0%	0%	0%	1%
WIZZ AIR	W6	1%	1%	1%	0%	0%	0%	0%	1%
BRITISH AIRWAYS	BA	0%	0%	4%	0%	0%	0%	0%	1%

Destination Profile at selected airports :

Data extracted from September 2010;

Share of Scheduled Flights		Share of Scheduled Flights		Share of Scheduled F	lights	Share of Schedule	ed Flights
Destination	ZAG	Destination	SPU	Destination	DBV	Destination	ZAD
VIE	10%	ZAG	15%	ZAG	17%	PUY	26%
MUC	8%	MUC	7%	LGW	9%	ZAG	15%
FRA	8%	LGW	5%	VIE	6%	STN	9%
SPU	8%	VIE	5%	MUC	4%	RYG	6%
DBV	7%	CGN	4%	FRA	4%	BRQ	6%
CDG	6%	OSL	4%	MAD	3%	CGN	6%
BUD	4%	FCO	4%	DUB	3%	CRL	6%
SJJ	4%	FRA	4%	BRU	3%	HHN	6%
ZRH	4%	DME	3%	DME	3%	FDH	3%
ZAD	4%	SVO	3%	BCN	3%	NYO	3%
BRU	3%	ARN	3%	DUS	2%	NRN	3%
SKP	2%	SXF	3%	STN	2%	DME	3%
LHR	2%	BUD	3%	MAN	2%	BRI	3%
PRG	2%	STR	3%	SXF	2%	DUB	3%
CGN	2%	ZRH	3%	LPL	2%	BRE	3%
SVO	2%	КВР	3%	ARN	1%	ARN	0%
IST	2%	BRS	2%	OSL	1%	ZAD	0%
AMS	2%	GOT	2%	EMA	1%	VIE	0%
PRN	2%	PRG	2%	FCO	1%	LYS	0%
СРН	2%	DUS	2%	OTP	1%	КВР	0%

Aircraft Types: Fleet Mix at the different airports

Data extracted from September 2010;

Aircraft Types	Average Seats per Aircraft	ZAG	SPU	DBV	TGD	TIV	ZAD	PUY	RJK	Total
DH4	73	37%	21%	10%	9%	0%	73%	53%	0%	24%
319	133	27%	33%	28%	3%	2%	10%	8%	0%	22%
100	105	1%	0%	0%	64%	48%	0%	0%	0%	14%
320	156	17%	19%	18%	2%	10%	0%	11%	0%	14%
AT7	68	1%	0%	2%	16%	17%	0%	0%	0%	4%
733	133	2%	4%	7%	1%	8%	0%	0%	0%	3%
EM2	30	4%	0%	0%	2%	0%	0%	0%	0%	2%
73G	127	0%	2%	2%	0%	8%	0%	0%	88%	2%
73H	118	0%	4%	5%	0%	0%	0%	0%	0%	2%
CRJ	50	4%	0%	0%	0%	0%	0%	0%	0%	2%
321	184	0%	0%	8%	0%	0%	0%	0%	0%	1%
E95	107	0%	3%	3%	1%	2%	0%	0%	0%	1%
738	161	0%	4%	2%	0%	0%	0%	0%	13%	1%
734	148	0%	0%	6%	0%	2%	3%	0%	0%	1%
757	159	0%	1%	2%	0%	0%	0%	16%	0%	1%
F70	76	3%	0%	0%	0%	0%	0%	0%	0%	1%
CR9	88	0%	1%	3%	1%	0%	0%	0%	0%	1%
AR8	83	2%	0%	0%	0%	0%	0%	0%	0%	1%
M90	157	0%	1%	2%	0%	0%	0%	0%	0%	1%
735	111	0%	1%	0%	2%	0%	0%	0%	0%	1%
	113	99%	96%	98%	99%	96%	85%	87%	100%	97%

Passengers per ATM

For SPU, ATM increases but PAX decreases from 2008 to 2009. It can be because of;

- i) the structure of traffic (smaller planes), or
- ii) the seat-load-factor is lower (same planes, but less passenger for a plane) probably this because the profits have declined in half from 08-09

Can we get the fleet mix for 2008 and 2009?

GERMAN AVIATION BENCHMARKING

Passengers per ATM

Outline:

- Background and Research Motivation
- Data and Characteristics of Sample Airports
- Indicators of Inequality and Variation
- Financial Situation of Sample Airports
- Efficiency Measures
- Special Issues
- Summary and Outlook

Indications of Seasonality: Monthly ATM 2008-2009

Indications of Seasonality: Monthly PAX 2008-2009

Indicators of Seasonality

- In Split, appr. 22% of the total ATMs in 2008 was served in August, 15% in September. But only around 3% was in January and February.
- Similar situation for Zadar, Pula and Dubrovnik...

Indicators of Seasonality

• In Zadar, 30% of the total ATMs in 2009 was served in July, but only around 2-3% in winter months.

Indicators of Seasonality

• The three capital cities in the sample LJU, TGD and ZAG show more stable traffic throughout the year.

GERMAN AVIATION BENCHMARKING

Indicators of Seasonality

GERMAN AIRPORT	
PERFORMANC	Ε

Seasonality Indicator 1: "Peak Month to Average Month", 2009

- In terms of PAX and ATM
- Quick way of ranking
- Factor does not include annual fluctuation, therefore not ideal candidate for measuring seasonality

				Peak-to-	
	Peak-to-			Average	
Rank ATM	Average Factor	Airport	Rank PAX	Facator	Airport
1	1.28	Zagreb	1	1.28	Podgorica
2	1.3	Podgorica	2	1.32	Zagreb
3	1.65	Ljubljana	3	1.64	Ljubljana
4	1.78	Tivat	4	1.77	Tivat
5	2.15	Dubrovnik	5	2.32	Dubrovnik
6	2.38	Split	6	2.38	Split
8	2.54	Zadar	7	2.58	Zadar
9	2.9	Pula	8	3.05	Pula
	2	Average	9	2.20	Average

Seasonality Indicator 2: "Lorenz Curve"

- "Visualizes" Inequality
- Preparation through Cumulative Diagram and Ranking
- The further away from "Total Equality"

45-Degree line, the more seasonal is the Airport

Seasonality Indicator 2: "Lorenz Curve"

Seasonality Indicator 3: "GINI-Coefficient"

- In addition to Ratios and Lorenz-Curve, we can also use the Gini-Coefficient, which is to some extent the graphical representation of the Lorenz Curve
- The most commonly used measure of inequality.
- The coefficient varies between
 0, which reflects complete equality and
 1, which indicates complete inequality.*
- Applicable for Seasonality?
- We are still experimenting about what are good indicators of seasonality

GERMAN AIRPORT	
PERFORMANC	E

Seasonality Indicator 3: "GINI-Coefficient"

•	Ranking possible by one Index, therefore Gini is a good indicator for Benchmarking seasonal Differences
•	Results will differ if we use different
	measure of inequality, PAX or
Nc	profits instead of ATMs Note - further Research to make Seasonal and Non-Seasonal Airports comparable ote: Zagreb had the least seasonal
	difficulties in 2008, other Croatian Airports suffer more

GINI-Index	Airport
0.05	Zagreb
0.12	Ljubljana
0.12	Podgorica
0.25	Tivat
0.30	Zadar
0.30	Split
0.32	Pula
0.36	Dubrovnik
0.42	Rijeka
0.18	Average
0.00	Total Equality

Daily Traffic Variation:

Besides the monthly variation, daily variation of traffic is also interesting to take a closer look:

 \rightarrow In Zagreb, we observe a peak on Friday..

Daily Traffic Variation:

 \rightarrow The graph shows the air traffic movements for each hour of the day for Split Airport. \rightarrow In Split we observe a peak on Saturday

(recall the abandoned peak-pricing on Saturdays in Split)

Outline:

- Background and Research Motivation
- Data and Characteristics of Sample Airports
- Indicators of Inequality and Variation
- Financial Situation of Sample Airports
- Efficiency Measures
- Summary and Outlook

Financial Indicators:

The traffic shows us reasonable seasonal variations:

→But how do these variations are reflected in the financial figures?
→How do the revenues, costs, profits look like?

However, the financial data is not complete yet, Data for Dubrovnik is on an annual level and Zadar 08-09 is completely missing

GERMAN AVIATION BENCHMARKING

Financial Indicators: Total Revenues

GERMAN AVIATION BENCHMARKING

Financial Indicators: Total Costs

Financial Indicators: Profits, Annual

Financial Indicators: Profits, Monthly

GERMAN AIRPORT GERMAN AVIATION PERFORMANCE BENCHMARKING **Financial Indicators: Total Costs and Revenues Cumulative Revenues and Costs, SPU** \rightarrow In SPU, the airport starts to recover its 25€ costs in June of 2008... 20€ whereas, 15€ Millions \rightarrow In ZAG, airport's revenues are higher Total Revenue 10€ Total Cost than its costs for each month in 2008. 5€ 0€ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2008 **Cumulative Revenues and Costs, ZAG** 50€ 45€ 40€ 35€ 30€ Millions \rightarrow What possibilities are there: 25€ Total Revenue 20€ To increase the revenues in winter? i) Total Cost 15€ ii) To decrease the costs in winter? 10€ 5€ iii) To increase the revenues in summer 0€ to better subsidize the costs in Jan Feb Mar Jul Aug Sep Oct Nov Dec Apr Mav Jun 2008 winter?

GERMAN AVIATION BENCHMARKING

Financial Indicators: Share of Aviation Revenues

GERMAN AVIATION BENCHMARKING

Financial Indicators: Share of Aviation Revenues

In other European Airports:

 \rightarrow If we consider the European airports as a benchmark;

- Is there a chance of improvement on non-aviation performance.? More research!!

Outline:

- Background and Research Motivation
- Data and Characteristics of Sample Airports
- Indicators of Inequality and Variation
- Financial Situation of Sample Airports
- Efficiency Measures
- Special Issues
- Summary and Outlook

GERMAN AIRPORT	
PERFORMANCE	

Employees: Short Term vs. Full Time

Page 39

GERMAN AVIATION BENCHMARKING

Efficiency Measures:

 \rightarrow **TIV** is by far the best one within the sample.

 \rightarrow 60 Employees in TIV, compared to 350 in LJU with similar traffic figures?

 \rightarrow further data analysis needed

Efficiency Measures:

The financial indicators for the Croatian airports are actually quite similar, we still need to analyze in more detail the data from Ljubliana and Podgorica

GERMAN AVIATION BENCHMARKING

Efficiency Measures:

 \rightarrow PUY is an outlier so it is taken out of the graph. \rightarrow Calculation of break even point in the future

Efficiency Measures:

Efficiency Measures:

\rightarrow Comment here!

GERMAN AVIATION BENCHMARKING

Efficiency Measures:

 \rightarrow PUY is an outlier so it is taken out of the graph.

 \rightarrow Personnel costs are fairly consistent during the year, even though there are many fewer PAX in the off season months they still pay out the same salaries \rightarrow Also a big number of services contracted is done in the first and last month of the year

Outline:

- Background and Research Motivation
- Data and Characteristics of Sample Airports
- Indicators of Inequality and Variation
- Financial Situation of Sample Airports
- Efficiency Measures
- Special Issues
- Summary and Outlook

Conclusion

- All airports have peak revenues in summer months, even capital cities who show smaller indications of seasonality.
 - What is the pricing strategy in the summer months?
- In winter months costs are greater than revenues, main challange for airports?
 - Why do the total costs for ZAG and SPU increase in closing months.
- Some airports such as SPU break even in June, whereas ZAG makes profit in each month of the year
- Need to obtain the fleet mix for airports
- Share of non-aviation revenue is in the range of European average.

GE	RMAN AIRPORT
	PERFORMANCE

Conclusion

 Monthly total revenues/PAX are smaller than monthly total costs/PAX in low demand months and vice versa.

-Economies of scale: The more PAX the lower cost/PAX become

- Break even point: How many PAX to break even?

-Monthly revenues,costs/PAX for PUY are inconsistent with other airports

 Only SPU and PUY are adapting a strategy to higher extra workers in busy summer months

Further Studies:

On Financial Efficiency

- 1. Calculating the cost of seasonal operation
- → Mainly investigating the fixed costs and level of outsourcing to reduce costs
- → Analyze role of state aid to maintain a financially viable operation in the light of the positive externalities the airport creates
- 2. Focusing on Peak Hour Pricing and financial effects

Thank you for your attention.

A Joint Project of: University of Applied Sciences Bremen Berlin School of Economics (FHW) Int. University of Applied Sciences Bad Honnef

www.gap-projekt.de

Contact:

Vedad Avdagic Vedadavd_1@hotmail.com Branko Bubalo Branko.bubalo@googlemail.com Tolga Ulku Tolgaul@yahoo.com

Page 50